-
1 capability set number 1 (IN)
Связь: набор возможностей номер 1 (CS1)Универсальный англо-русский словарь > capability set number 1 (IN)
-
2 capability set number 1
Универсальный англо-русский словарь > capability set number 1
-
3 CS1
1) Военный термин: Critical-Sensitive Level 12) Связь: Capability Set number 1 (IN) -
4 rating
- характеристика
- установление величины
- технические характеристики
- снятие характеристики
- рейтинг
- режим работы ГТД
- паспортные данные
- паспортная величина
- параметр
- оценка
- нормирование
- Номинальный режим работы электротехнического изделия (электротехнического устройства, электрооборудования)
- номинальный режим работы электротехнического изделия
- номинальный параметр
- номинальные данные
- номинальное значение
- номинальная характеристика
- номинальная мощность
- номинал
- ДИАПАЗОН НОМИНАЛЬНЫХ ЗНАЧЕНИЙ
номинал
номинальное значение
Предельно допустимое (обычно расчетное) значение параметра, например, уровня громкости, при котором величина нелинейных искажений, вносимых устройством, не превосходит установленных норм.
[Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]
номинал
Денежная сумма, формально обозначающая стоимость соответствующего объекта (например, ценных бумаг, денег). То же: Нарицательная стоимость.
[ http://slovar-lopatnikov.ru/]Тематики
- экономика
- электросвязь, основные понятия
Синонимы
EN
номинальная характеристика
паспортное значение
—
[ http://slovarionline.ru/anglo_russkiy_slovar_neftegazovoy_promyishlennosti/]Тематики
Синонимы
EN
номинальный параметр
Значение параметра для указанных условий эксплуатации детали, устройства или оборудования, как правило, устанавливаемое изготовителем.
[ ГОСТ Р МЭК 60050-426-2006]
номинальный параметр
Система номинальных значений и рабочих условий.
МЭК 60050(151-04-04).
[ ГОСТ Р 50030. 1-2000 ( МЭК 60947-1-99)]EN
rating
set of rated values and operating conditions
[IEC 60947-1, ed. 5.0 (2007-06)]
[IEV 151-16-11]FR
caractéristiques assignées
ensemble des valeurs assignées et des conditions de fonctionnement
[IEC 60947-1, ed. 5.0 (2007-06)]
[IEV 151-16-11]Тематики
- электротехника, основные понятия
EN
FR
номинальный режим работы электротехнического изделия
Режим работы электротехнического изделия (электротехнического устройства, электрооборудования), при котором значения каждого из параметров режима равны номинальным.
[ ГОСТ 18311-80]Тематики
EN
оценка
-
[IEV number 151-16-11]
оценка
Понятие математической статистики, эконометрики, метрологии, квалиметрии и других дисциплин, по-разному определяемое в каждой из них. С помощью экономических О. характеризуется и соизмеряется эффективность различных ресурсов (см. Оценка природных ресурсов, Оценка трудовых ресурсов, а также Объективно-обусловленные оценки, Нормативы). Статистическая О. определяется как «функция от результатов наблюдений, при¬меняемая для оценки неизвестных параметров распределения вероятностей изучаемых случайных величин»[1]. О. применяются для количественного определения параметров экономико-матема¬тических моделей с помощью статистического преобразования выборочной (наблюдае¬мой) информации. Применяются точечная О. и интервальная О. См. также Выборка, Метод наименьших квадратов, Метод максимального правдоподобия, Оценка параметров модели. [1] СЭС, с.1270
[ http://slovar-lopatnikov.ru/]EN
rating
set of rated values and operating conditions
[IEV number 151-16-11]FR
caractéristiques assignées, f, pl
ensemble des valeurs assignées et des conditions de fonctionnement
[IEV number 151-16-11]Тематики
EN
DE
FR
паспортная величина
расчетное значение
оценочные данные
—
[Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]Тематики
Синонимы
EN
режим работы ГТД
режим
Состояние работающего ГТД, характеризуемое совокупностью определенных значений тяги (мощности), а также параметров при принятом законе регулирования, определяющих происходящие в нем процессы, тепловую и динамическую напряженность его деталей.
[ ГОСТ 23851-79]Тематики
Синонимы
EN
DE
FR
рейтинг
[Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]
рейтинг
Совокупность объектов или явлений, упорядоченная по числовому или порядковому показателю, отображающему важность, значимость, распространенность, популярность и другие подобные качества этого объекта или явления, а также методика этого упорядочения. См., например, Кредитный рейтинг, Рейтинг банков и др.
[ http://slovar-lopatnikov.ru/]EN
Тематики
EN
технические характеристики
Ряд номинальных параметров или условий эксплуатации.
[ ГОСТ Р МЭК 60050-426-2006]
технические характеристики
-
[Интент]
Тематики
- взрывозащита
- проектирование, документация
EN
- characteristics
- data
- duty specifications
- engineering characteristic
- engineering data
- engineering specifications
- performance
- performance capability
- performance specification
- performance specifications
- rating
- specification
- specifications
- specifications manual
- TDS
- technical capability
- technical characteristics
- technical data
- technical data sheet
- technical details
- technical features
- technical performance
- technical specifications
- technical standards
- technical statement
- techspecs
FR
характеристика
Отличительное свойство.
Примечания
1. Характеристика может быть присущей или присвоенной.
2. Характеристика может быть качественной или количественной.
3. Существуют различные классы характеристик, такие как:
- физические (например, механические, электрические, химические или биологические характеристики);
- органолептические (например, связанные с запахом, осязанием, вкусом, зрением, слухом);
- этические (например, вежливость, честность, правдивость);
- временные(например, пунктуальность, безотказность, доступность);
- эргономические(например, физиологические характеристики или связанные с безопасностью человека);
- функциональные(например, максимальная скорость самолета).
[ ГОСТ Р ИСО 9000-2008]
характеристика
-
[IEV number 151-15-34]EN
characteristic
relationship between two or more variable quantities describing the performance of a device under given conditions
[IEV number 151-15-34]FR
(fonction) caractéristique, f
relation entre deux ou plusieurs variables décrivant le fonctionnement d'un dispositif dans des conditions spécifiées
[IEV number 151-15-34]Тематики
- системы менеджмента качества
- электротехника, основные понятия
EN
- ability
- attribute
- behavior
- behaviour
- categorization
- character
- characteristic
- characteristic curve
- curve
- description
- feature
- letter of reference
- parameter
- pattern
- performance
- property
- qualification
- quality
- rating
- record
- response
- signature
- state
- testimonial
DE
FR
- (fonction) caractéristique, f
96. Номинальный режим работы электротехнического изделия (электротехнического устройства, электрооборудования)
Rating
Режим работы электротехнического изделия (электротехнического устройства, электрооборудования), при котором значения каждого из параметров режима равны номинальным
Источник: ГОСТ 18311-80: Изделия электротехнические. Термины и определения основных понятий оригинал документа
3.16 параметр (rating): Общий термин, используемый для обозначения характерных величин, которые в совокупности определяют рабочие условия, на основании которых проводятся испытания и на которые рассчитаны данные плавкие вставки.
Примеры параметров, характерных для плавких предохранителей:
- напряжение Un;
- ток In;
- отключающая способность.
Источник: ГОСТ Р МЭК 60127-1-2005: Миниатюрные плавкие предохранители. Часть 1. Терминология для миниатюрных плавких предохранителей и общие требования к миниатюрным плавким вставкам оригинал документа
3.8 технические характеристики (rating): Ряд номинальных параметров или эксплуатационных условий,
Источник: ГОСТ Р МЭК 61241-0-2007: Электрооборудование, применяемое в зонах, опасных по воспламенению горючей пыли. Часть 0. Общие требования оригинал документа
3.2 номинальные данные (rating): Совокупность номинальных значений параметров и условий эксплуатации.
Источник: ГОСТ Р 52776-2007: Машины электрические вращающиеся. Номинальные данные и характеристики оригинал документа
3.2.2 ДИАПАЗОН НОМИНАЛЬНЫХ ЗНАЧЕНИЙ (RATING): Совокупность НОМИНАЛЬНЫХ ЗНАЧЕНИЙ и условий функционирования (см. [1], позиция 151-04-04).
2.3.1 номинальное значение (rating): Общий термин, обозначающий значения параметров, которые в совокупности определяют рабочие условия, в соответствии с которыми проводят испытания и на которые рассчитано оборудование.
[МЭС 441-18-36]
Примечание - Для низковольтных плавких предохранителей обычно указывают номинальные значения напряжения, тока, отключающей способности, потерь мощности, рассеиваемой мощности и частоты (при необходимости).
Для переменного напряжения номинальное напряжение и номинальный ток задают в виде действующих симметричных значений. Для постоянного напряжения при наличии пульсации номинальное напряжение задают в виде среднего значения, номинальный ток - в виде действующего значения. Это относится ко всем значениям напряжения и тока, если не оговорено иное.
Источник: ГОСТ Р МЭК 60269-1-2010: Предохранители низковольтные плавкие. Часть 1. Общие требования оригинал документа
3.5.4 номинальный параметр (rating): Система номинальных значений и рабочих условий.
[МЭК 60050(151-04-04)]
Источник: ГОСТ Р 51731-2010: Контакторы электромеханические бытового и аналогичного назначения оригинал документа
3.2.1 паспортные данные (rating): Совокупность регламентированных значений параметров и рабочих условий механизма или устройства.
Примечание - См. также [4], термин 151-16-11.
Источник: ГОСТ Р 55061-2012: Совместимость технических средств электромагнитная. Статические системы переключения. Часть 2. Требования и методы испытаний оригинал документа
Англо-русский словарь нормативно-технической терминологии > rating
-
5 Artificial Intelligence
In my opinion, none of [these programs] does even remote justice to the complexity of human mental processes. Unlike men, "artificially intelligent" programs tend to be single minded, undistractable, and unemotional. (Neisser, 1967, p. 9)Future progress in [artificial intelligence] will depend on the development of both practical and theoretical knowledge.... As regards theoretical knowledge, some have sought a unified theory of artificial intelligence. My view is that artificial intelligence is (or soon will be) an engineering discipline since its primary goal is to build things. (Nilsson, 1971, pp. vii-viii)Most workers in AI [artificial intelligence] research and in related fields confess to a pronounced feeling of disappointment in what has been achieved in the last 25 years. Workers entered the field around 1950, and even around 1960, with high hopes that are very far from being realized in 1972. In no part of the field have the discoveries made so far produced the major impact that was then promised.... In the meantime, claims and predictions regarding the potential results of AI research had been publicized which went even farther than the expectations of the majority of workers in the field, whose embarrassments have been added to by the lamentable failure of such inflated predictions....When able and respected scientists write in letters to the present author that AI, the major goal of computing science, represents "another step in the general process of evolution"; that possibilities in the 1980s include an all-purpose intelligence on a human-scale knowledge base; that awe-inspiring possibilities suggest themselves based on machine intelligence exceeding human intelligence by the year 2000 [one has the right to be skeptical]. (Lighthill, 1972, p. 17)4) Just as Astronomy Succeeded Astrology, the Discovery of Intellectual Processes in Machines Should Lead to a Science, EventuallyJust as astronomy succeeded astrology, following Kepler's discovery of planetary regularities, the discoveries of these many principles in empirical explorations on intellectual processes in machines should lead to a science, eventually. (Minsky & Papert, 1973, p. 11)5) Problems in Machine Intelligence Arise Because Things Obvious to Any Person Are Not Represented in the ProgramMany problems arise in experiments on machine intelligence because things obvious to any person are not represented in any program. One can pull with a string, but one cannot push with one.... Simple facts like these caused serious problems when Charniak attempted to extend Bobrow's "Student" program to more realistic applications, and they have not been faced up to until now. (Minsky & Papert, 1973, p. 77)What do we mean by [a symbolic] "description"? We do not mean to suggest that our descriptions must be made of strings of ordinary language words (although they might be). The simplest kind of description is a structure in which some features of a situation are represented by single ("primitive") symbols, and relations between those features are represented by other symbols-or by other features of the way the description is put together. (Minsky & Papert, 1973, p. 11)[AI is] the use of computer programs and programming techniques to cast light on the principles of intelligence in general and human thought in particular. (Boden, 1977, p. 5)The word you look for and hardly ever see in the early AI literature is the word knowledge. They didn't believe you have to know anything, you could always rework it all.... In fact 1967 is the turning point in my mind when there was enough feeling that the old ideas of general principles had to go.... I came up with an argument for what I called the primacy of expertise, and at the time I called the other guys the generalists. (Moses, quoted in McCorduck, 1979, pp. 228-229)9) Artificial Intelligence Is Psychology in a Particularly Pure and Abstract FormThe basic idea of cognitive science is that intelligent beings are semantic engines-in other words, automatic formal systems with interpretations under which they consistently make sense. We can now see why this includes psychology and artificial intelligence on a more or less equal footing: people and intelligent computers (if and when there are any) turn out to be merely different manifestations of the same underlying phenomenon. Moreover, with universal hardware, any semantic engine can in principle be formally imitated by a computer if only the right program can be found. And that will guarantee semantic imitation as well, since (given the appropriate formal behavior) the semantics is "taking care of itself" anyway. Thus we also see why, from this perspective, artificial intelligence can be regarded as psychology in a particularly pure and abstract form. The same fundamental structures are under investigation, but in AI, all the relevant parameters are under direct experimental control (in the programming), without any messy physiology or ethics to get in the way. (Haugeland, 1981b, p. 31)There are many different kinds of reasoning one might imagine:Formal reasoning involves the syntactic manipulation of data structures to deduce new ones following prespecified rules of inference. Mathematical logic is the archetypical formal representation. Procedural reasoning uses simulation to answer questions and solve problems. When we use a program to answer What is the sum of 3 and 4? it uses, or "runs," a procedural model of arithmetic. Reasoning by analogy seems to be a very natural mode of thought for humans but, so far, difficult to accomplish in AI programs. The idea is that when you ask the question Can robins fly? the system might reason that "robins are like sparrows, and I know that sparrows can fly, so robins probably can fly."Generalization and abstraction are also natural reasoning process for humans that are difficult to pin down well enough to implement in a program. If one knows that Robins have wings, that Sparrows have wings, and that Blue jays have wings, eventually one will believe that All birds have wings. This capability may be at the core of most human learning, but it has not yet become a useful technique in AI.... Meta- level reasoning is demonstrated by the way one answers the question What is Paul Newman's telephone number? You might reason that "if I knew Paul Newman's number, I would know that I knew it, because it is a notable fact." This involves using "knowledge about what you know," in particular, about the extent of your knowledge and about the importance of certain facts. Recent research in psychology and AI indicates that meta-level reasoning may play a central role in human cognitive processing. (Barr & Feigenbaum, 1981, pp. 146-147)Suffice it to say that programs already exist that can do things-or, at the very least, appear to be beginning to do things-which ill-informed critics have asserted a priori to be impossible. Examples include: perceiving in a holistic as opposed to an atomistic way; using language creatively; translating sensibly from one language to another by way of a language-neutral semantic representation; planning acts in a broad and sketchy fashion, the details being decided only in execution; distinguishing between different species of emotional reaction according to the psychological context of the subject. (Boden, 1981, p. 33)Can the synthesis of Man and Machine ever be stable, or will the purely organic component become such a hindrance that it has to be discarded? If this eventually happens-and I have... good reasons for thinking that it must-we have nothing to regret and certainly nothing to fear. (Clarke, 1984, p. 243)The thesis of GOFAI... is not that the processes underlying intelligence can be described symbolically... but that they are symbolic. (Haugeland, 1985, p. 113)14) Artificial Intelligence Provides a Useful Approach to Psychological and Psychiatric Theory FormationIt is all very well formulating psychological and psychiatric theories verbally but, when using natural language (even technical jargon), it is difficult to recognise when a theory is complete; oversights are all too easily made, gaps too readily left. This is a point which is generally recognised to be true and it is for precisely this reason that the behavioural sciences attempt to follow the natural sciences in using "classical" mathematics as a more rigorous descriptive language. However, it is an unfortunate fact that, with a few notable exceptions, there has been a marked lack of success in this application. It is my belief that a different approach-a different mathematics-is needed, and that AI provides just this approach. (Hand, quoted in Hand, 1985, pp. 6-7)We might distinguish among four kinds of AI.Research of this kind involves building and programming computers to perform tasks which, to paraphrase Marvin Minsky, would require intelligence if they were done by us. Researchers in nonpsychological AI make no claims whatsoever about the psychological realism of their programs or the devices they build, that is, about whether or not computers perform tasks as humans do.Research here is guided by the view that the computer is a useful tool in the study of mind. In particular, we can write computer programs or build devices that simulate alleged psychological processes in humans and then test our predictions about how the alleged processes work. We can weave these programs and devices together with other programs and devices that simulate different alleged mental processes and thereby test the degree to which the AI system as a whole simulates human mentality. According to weak psychological AI, working with computer models is a way of refining and testing hypotheses about processes that are allegedly realized in human minds.... According to this view, our minds are computers and therefore can be duplicated by other computers. Sherry Turkle writes that the "real ambition is of mythic proportions, making a general purpose intelligence, a mind." (Turkle, 1984, p. 240) The authors of a major text announce that "the ultimate goal of AI research is to build a person or, more humbly, an animal." (Charniak & McDermott, 1985, p. 7)Research in this field, like strong psychological AI, takes seriously the functionalist view that mentality can be realized in many different types of physical devices. Suprapsychological AI, however, accuses strong psychological AI of being chauvinisticof being only interested in human intelligence! Suprapsychological AI claims to be interested in all the conceivable ways intelligence can be realized. (Flanagan, 1991, pp. 241-242)16) Determination of Relevance of Rules in Particular ContextsEven if the [rules] were stored in a context-free form the computer still couldn't use them. To do that the computer requires rules enabling it to draw on just those [ rules] which are relevant in each particular context. Determination of relevance will have to be based on further facts and rules, but the question will again arise as to which facts and rules are relevant for making each particular determination. One could always invoke further facts and rules to answer this question, but of course these must be only the relevant ones. And so it goes. It seems that AI workers will never be able to get started here unless they can settle the problem of relevance beforehand by cataloguing types of context and listing just those facts which are relevant in each. (Dreyfus & Dreyfus, 1986, p. 80)Perhaps the single most important idea to artificial intelligence is that there is no fundamental difference between form and content, that meaning can be captured in a set of symbols such as a semantic net. (G. Johnson, 1986, p. 250)Artificial intelligence is based on the assumption that the mind can be described as some kind of formal system manipulating symbols that stand for things in the world. Thus it doesn't matter what the brain is made of, or what it uses for tokens in the great game of thinking. Using an equivalent set of tokens and rules, we can do thinking with a digital computer, just as we can play chess using cups, salt and pepper shakers, knives, forks, and spoons. Using the right software, one system (the mind) can be mapped into the other (the computer). (G. Johnson, 1986, p. 250)19) A Statement of the Primary and Secondary Purposes of Artificial IntelligenceThe primary goal of Artificial Intelligence is to make machines smarter.The secondary goals of Artificial Intelligence are to understand what intelligence is (the Nobel laureate purpose) and to make machines more useful (the entrepreneurial purpose). (Winston, 1987, p. 1)The theoretical ideas of older branches of engineering are captured in the language of mathematics. We contend that mathematical logic provides the basis for theory in AI. Although many computer scientists already count logic as fundamental to computer science in general, we put forward an even stronger form of the logic-is-important argument....AI deals mainly with the problem of representing and using declarative (as opposed to procedural) knowledge. Declarative knowledge is the kind that is expressed as sentences, and AI needs a language in which to state these sentences. Because the languages in which this knowledge usually is originally captured (natural languages such as English) are not suitable for computer representations, some other language with the appropriate properties must be used. It turns out, we think, that the appropriate properties include at least those that have been uppermost in the minds of logicians in their development of logical languages such as the predicate calculus. Thus, we think that any language for expressing knowledge in AI systems must be at least as expressive as the first-order predicate calculus. (Genesereth & Nilsson, 1987, p. viii)21) Perceptual Structures Can Be Represented as Lists of Elementary PropositionsIn artificial intelligence studies, perceptual structures are represented as assemblages of description lists, the elementary components of which are propositions asserting that certain relations hold among elements. (Chase & Simon, 1988, p. 490)Artificial intelligence (AI) is sometimes defined as the study of how to build and/or program computers to enable them to do the sorts of things that minds can do. Some of these things are commonly regarded as requiring intelligence: offering a medical diagnosis and/or prescription, giving legal or scientific advice, proving theorems in logic or mathematics. Others are not, because they can be done by all normal adults irrespective of educational background (and sometimes by non-human animals too), and typically involve no conscious control: seeing things in sunlight and shadows, finding a path through cluttered terrain, fitting pegs into holes, speaking one's own native tongue, and using one's common sense. Because it covers AI research dealing with both these classes of mental capacity, this definition is preferable to one describing AI as making computers do "things that would require intelligence if done by people." However, it presupposes that computers could do what minds can do, that they might really diagnose, advise, infer, and understand. One could avoid this problematic assumption (and also side-step questions about whether computers do things in the same way as we do) by defining AI instead as "the development of computers whose observable performance has features which in humans we would attribute to mental processes." This bland characterization would be acceptable to some AI workers, especially amongst those focusing on the production of technological tools for commercial purposes. But many others would favour a more controversial definition, seeing AI as the science of intelligence in general-or, more accurately, as the intellectual core of cognitive science. As such, its goal is to provide a systematic theory that can explain (and perhaps enable us to replicate) both the general categories of intentionality and the diverse psychological capacities grounded in them. (Boden, 1990b, pp. 1-2)Because the ability to store data somewhat corresponds to what we call memory in human beings, and because the ability to follow logical procedures somewhat corresponds to what we call reasoning in human beings, many members of the cult have concluded that what computers do somewhat corresponds to what we call thinking. It is no great difficulty to persuade the general public of that conclusion since computers process data very fast in small spaces well below the level of visibility; they do not look like other machines when they are at work. They seem to be running along as smoothly and silently as the brain does when it remembers and reasons and thinks. On the other hand, those who design and build computers know exactly how the machines are working down in the hidden depths of their semiconductors. Computers can be taken apart, scrutinized, and put back together. Their activities can be tracked, analyzed, measured, and thus clearly understood-which is far from possible with the brain. This gives rise to the tempting assumption on the part of the builders and designers that computers can tell us something about brains, indeed, that the computer can serve as a model of the mind, which then comes to be seen as some manner of information processing machine, and possibly not as good at the job as the machine. (Roszak, 1994, pp. xiv-xv)The inner workings of the human mind are far more intricate than the most complicated systems of modern technology. Researchers in the field of artificial intelligence have been attempting to develop programs that will enable computers to display intelligent behavior. Although this field has been an active one for more than thirty-five years and has had many notable successes, AI researchers still do not know how to create a program that matches human intelligence. No existing program can recall facts, solve problems, reason, learn, and process language with human facility. This lack of success has occurred not because computers are inferior to human brains but rather because we do not yet know in sufficient detail how intelligence is organized in the brain. (Anderson, 1995, p. 2)Historical dictionary of quotations in cognitive science > Artificial Intelligence
-
6 system
система; комплекс; средство; способ; метод; сеть (напр. дорог) ;aiming-navigation system (analog, digital) — прицельно-навигационная система (аналоговая, цифровая)
air observation, acquisition and fire control system — (бортовая) система воздушной разведки, засечки целей и управления огнем
air support aircraft ECM (equipment) system — (бортовая) система РЭП для самолетов авиационной поддержки
airborne (ground) target acquisition and illumination laser system — ав. бортовая лазерная система обнаружения и подсветки (наземных) целей
airborne (ground) targeting and laser designator system — ав. бортовая лазерная система обнаружения и целеуказания (наземных целей)
airborne laser illumination, ranging and tracking system — ав. бортовая система лазерной подсветки, определения дальности и сопровождения цели
artillery (nuclear) delivery system — артиллерийская система доставки (ядерного) боеприпаса (к цели)
C2 system — система оперативного управления; система руководства и управления
C3 system — система руководства, управления и связи; система оперативного управления и связи
channel and message switching (automatic) communications system — АСС с коммутацией каналов и сообщений
country-fair type rotation system (of instruction) — метод одновременного обучения [опроса] нескольких учебных групп (переходящих от одного объекта изучения к другому)
dual-capable (conventional/nuclear) weapon delivery system — система доставки (обычного или ядерного) боеприпаса к цели
electromagnetic emitters identification, location and suppression system — система обнаружения, опознавания и подавления источников электромагнитных излучений [излучающих РЭС]
field antimissile (missile) system — полевой [войсковой] ПРК
fire-on-the-move (air defense) gun system — подвижный зенитный артиллерийский комплекс для стрельбы в движении [на ходу]
fluidic (missile) control system — ркт. гидравлическая [струйная] система управления полетом
forward (area) air defense system — система ПВО передового района; ЗРК для войсковой ПВО передового района
graduated (availability) operational readiness system — Бр. система поэтапной боевой готовности (частей и соединений)
high-resolution satellite IR detection, tracking and targeting system — спутниковая система с ИК аппаратурой высокой разрешающей способности для обнаружения, сопровождения целей и наведения средств поражения
ICBM (alarm and) early warning satellite system — спутниковая система обнаружения пусков МБР и раннего предупреждения (средств ПРО)
information storage, tracking and retrieval system — система накопления, хранения и поиска информации
instantaneous grenade launcher (armored vehicle) smoke system — гранатомет (БМ) для быстрой постановки дымовой завесы
Precision Location [Locator] (and) Strike system — высокоточная система обеспечения обнаружения и поражения целей; высокоточный разведывательно-ударный комплекс
rapid deceleration (parachute) delivery system — парашютная система выброски грузов с быстрым торможением
real time, high-resolution reconnaissance satellite system — спутниковая разведывательная система с высокой разрешающей способностью аппаратуры и передачей информации в реальном масштабе времени
received signal-oriented (output) jamming signal power-adjusting ECM system — система РЭП с автоматическим регулированием уровня помех в зависимости от мощности принимаемого сигнала
sea-based nuclear (weapon) delivery system — система морского базирования доставки ядерного боеприпаса к цели
small surface-to-air ship self-defense (missile) system — ЗРК ближнего действия для самообороны корабля
Status Control, Alerting and Reporting system — система оповещения, контроля и уточнения состояния [боевой готовности] сил и средств
surface missile (weapon) system — наземный [корабельный] РК
target acquisition, rapid designation and precise aiming system — комплекс аппаратуры обнаружения цели, быстрого целеуказания и точного прицеливания
— ABM defense system— antimissile missile system— central weapon system— countersurprise military system— laser surveying system— tank weapon system— vertical launching system— weapons system -
7 color
1. цвет, тон; оттенок2. краска; красящее вещество; пигмент; красить, окрашивать3. колер; окраска, расцветка4. пигментные красителиout of color — выцветший, выгоревший
to bring colors — переносить краску; накатывать краску
5. сравнивать цвета6. подбирать краски7. цвет фонаcolor killer — подавитель цвета; выключатель цветности
8. непрозрачная краска9. цвет краски в массеdistinctive colors — отличительные цвета; основные цвета
dry color — пигмент, сухая краска
color distance — несовпадение цвета, цветовое различие
10. серовато-коричневый цвет11. разноцветные бронзовые порошки12. грунтовая краска, грунт13. фоновая краскаto show in color — закрашивать, давать в красках
14. цвет краски15. чернильная краскаkey color — основная краска; краска основного цвета
luminous color — светящаяся краска, люминофор
matching color — цвет, используемый для подбора красок
16. масляная краска17. жировой красительphotoengraving color — краска, используемая в цинкографии
18. типографская краска19. краска для цветной печати газет20. цвет, полученный наложением красок, составной цвет21. основные цвета22. основные краскиhair color — цвет волос; краска для волос
23. сплошной тон, сплошная окраска, сплошная заливка24. плашкаsolid color printing — печатание со сплошных форм цветными красками, печатание цветных плашек
См. также в других словарях:
Capability Maturity Model — The Capability Maturity Model (CMM) is a process capability maturity model which aids in the definition and understanding of an organization s processes .The CMM was first described in Managing the Software Process by Watts Humphrey, [cite book… … Wikipedia
Number Five Crossbar Switching System — The Number Five Crossbar Switching System or 5XB switch, designed by Bell Labs and made by Western Electric, was in use in Bell System telephone exchanges from 1948 to the 1980s. Its principal use was as a Class 5 telephone switch, though… … Wikipedia
Meter Point Administration Number — A Meter Point Administration Number, also known as MPAN, Supply Number or S Number, is a 21 digit reference used in Great Britain to uniquely identify electricity supply points such as individual domestic residences. The gas equivalent is the… … Wikipedia
Negative capability — describes the resistance to a set of institutional arrangements or a system of knowledge about the world and human experience. It explains the capacity of human beings to reject the totalizing constraints of a closed context, and to both… … Wikipedia
Hayes command set — The Hayes command set is a specific command language originally developed for the Hayes Smartmodem 300 baud modem in 1981. The command set consists of a series of short text strings which combine together to produce complete commands for… … Wikipedia
Service Capability Interaction Manager — A Service Capability Interaction Manager (or SCIM) orchestrates service delivery among application server platforms within the IP Multimedia Subsystem architecture.The Service Capability Interaction Manager (SCIM) was introduced in 3GPP TS 23.002 … Wikipedia
Instruction set — An instruction set, or instruction set architecture (ISA), is the part of the computer architecture related to programming, including the native data types, instructions, registers, addressing modes, memory architecture, interrupt and exception… … Wikipedia
Voice modem command set — Main article: Modem Voice modem is a term commonly used to describe an analog telephone data modem with a built in capability of transmitting and receiving voice recordings over the phone line. Voice modems are used for telephony and answering… … Wikipedia
Telephone number — A telephone number or phone number is a sequence of digits used to call from one telephone line to another in a public switched telephone network. When telephone numbers were invented, they were short as few as one, two or three digits and were… … Wikipedia
Universal Character Set Characters — The Unicode Consortium (UC) and the International Organisation for Standardisation (ISO) collaborate on the Universal Character Set. (UCS)] . The UCS is an international standard to map characters used in natural language (as opposed to… … Wikipedia
Kisekae Set System — (commonly known as KiSS) is a blending of art with computers originally designed to allow creation of virtual paper dolls . Kisekae is short for kisekae ningyou ; a Japanese term meaning dress up dolls . Unlike computer art which creates or… … Wikipedia